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Abstract

There is a substantial literature on the use of linkage disequilibrium (LD) to estimate effective population size using unlinked
loci. The Ne estimates are extremely sensitive to the sampling process, and there is currently no theory to cope with the
possible biases. We derive formulae for the analysis of idealised populations mating at random with multi-allelic
(microsatellite) loci. The ‘Burrows composite index’ is introduced in a novel way with a ‘composite haplotype table’. We
show that in a sample of diploid size S, the mean value of x2 or r2 from the composite haplotype table is biased by a factor

of 1{1=(2S{1)2, rather than the usual factor 1z1=(2S{1) for a conventional haplotype table. But analysis of population
data using these formulae leads to Ne estimates that are unrealistically low. We provide theory and simulation to show that
this bias towards low Ne estimates is due to null alleles, and introduce a randomised permutation correction to compensate
for the bias. We also consider the effect of introducing a within-locus disequilibrium factor to r2, and find that this factor
leads to a bias in the Ne estimate. However this bias can be overcome using the same randomised permutation correction,
to yield an altered r2 with lower variance than the original r2, and one that is also insensitive to null alleles. The resulting
formulae are used to provide Ne estimates on 40 samples of the Queensland fruit fly, Bactrocera tryoni, from populations
with widely divergent Ne expectations. Linkage relationships are known for most of the microsatellite loci in this species. We
find that there is little difference in the estimated Ne values from using known unlinked loci as compared to using all loci,
which is important for conservation studies where linkage relationships are unknown.
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Introduction

The magnitude of linkage disequilibrium (LD) can be used to

estimate effective population size [1–5]. In general, low popula-

tions sizes are expected to give rise to relatively high levels of LD,

and similarly high population sizes to low LD levels. An important

feature of this means of estimation is that measurement at a single

point in time can provide information on effective size. Further-

more closely-linked loci give information on population sizes over

historical periods of time, while loosely-linked loci estimate

population sizes in the immediate past [3], [4].

Much recent attention has been paid to the use of unlinked loci

for estimating population size, for which the term ‘Linkage

Disequilibrium’ will inappropriately be used. There are three

major advantages of studying unlinked loci. First, the majority of

pairs of loci are unlinked. Secondly, these are the only locus pairs

for which it is easy to estimate the recombination frequency, 50%.

Finally, in the study of pest populations, and in the area of

conservation, it is usually the most recent population sizes that are

of interest, for which unlinked loci are the most relevant.

The principal problem in studying unlinked loci comes from the

sample sizes needed to obtain accurate LD estimates. The

expected disequilibrium is a function of 1=Ne, where Ne is the

effective population size, assumed constant, and 1=S, where S is

the sample size [6]. Unless sample sizes are large, the latter can

overwhelm the former.

A second complication comes from the usual necessity to use

diploid data. Most LD theory is based on haplotypes rather than

diploid genotypes, which typically cannot be observed. Although

the recognition of haplotypes may seem inappropriate for unlinked

loci, the same distinction applies as for linked loci, because the

information on population size comes from genes with the same

parental origin rather than genes inherited from different parents.

The passage from zygotic to to gametic parameters can be made

using either the maximum likelihood estimator of Hill [7], or, as

will be used here, the Burrows estimator as elaborated by Weir [8].

In preliminary investigations of the size of Queensland fruit fly

populations, we found very low Ne estimates for populations that

are believed to be large. We traced this discrepancy to an excess of

homozygous genotypes, believed to be due to the presence of null

alleles at some of the microsatellite loci used in the study.

Because of these complications, the problem of finding an

adequate estimator of Ne is fraught with potential biases. Waples

and Do [9] have, however, shown that their LDNe program works
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well in estimating Ne from simulated data. The program uses

empirically derived correction factors rather than investigating the

underlying reasons for the biases. The purpose of the present

paper is to produce an analytical solution to account for the biases.

We derive two sets of formulae that do this, depending on whether

a ‘within-locus disequilibrium factor’ is used or not, and compare

the application of these two sets to simulated and real data.

Materials and Methods

Queensland Fruit Fly Samples
Two data sets are analysed in the paper.

(1) East coast Australian populations. The data are from 55

samples from towns in the state of NSW in the years 2002–

2004 [10]. Some of these sample come from areas where the

flies are endemic, and in other cases the outbreaks appear to

be only temporary.

(2) NorthWest. These flies were collected during the years 1999–

2003 from Northern West Australia and the Northern

Territory [11].

The data in the two cited papers have previously been

summarised only in terms of single locus statistics. The present

paper involves a two-locus analysis, which requires additional

information from the original data sets. The original data sets are

provided in Supporting Information, Data S1 and Data S2.

Computer Simulation
All simulations reported in the paper are forward Monte-Carlo

simulations under the Wright-Fisher model. Parents were chosen

randomly in each case, thereby allowing selfing and not assuming

permanent mate bonding, an important aspect of population

structure [6]. Most simulations involved a starting population with

either 16 or 32 loci, each locus having the number of alleles chosen

randomly between 2 and 8. Alleles were assigned randomly at

different loci, assuming no systematic LD. Populations were

simulated for 20 generations, followed by sampling without

replacement of 32 individuals from the final population, and

calculation of LD levels. Simulations were written in C, and are

available on request.

Theory
Most of LD theory applies to gametes rather than genotypes.

Fortunately a simple method, the ‘Burrows composite LD

coefficient’, is available for handling genotypes. This coefficient

has been defined by Cockerham and Weir [12] in terms of sums of

genotype frequencies. It is convenient to introduce here a slightly

different but simpler way of relating genotype frequencies to

gamete frequencies. See Table 1 for a listing of symbols used.

Figure 1 shows the principle for populating a ‘composite

haplotype table’. Each genotype in Part (i) contributes the four

possible gametes to the composite haplotype table in Part (ii). In

the case of double heterozygotes, where the phase is usually

unknown, each of the four possible haplotypes is represented. For

all other genotypes the haplotypes are known, but each genotype

nevertheless contributes four haplotypes. Note the use of S rather

than N for the diploid sample total to emphasise the distinction

between number in a population (N ) and number in a sample (S).

The normal haploid table cannot be written down from the

genotypes in Figure 1, but the total would be 2S, and, for example,

the number of a genes = na~2n1:zn2:. The marginal totals in the

composite table are double these.

Figure 2 shows a numerical example of the composite haplotype

table for one sample of size 32 from the Eastern Australia fruit fly

data set, where one microsatellite, a, has 3 alleles and a second, b,

has 4. Again the total in the haplotype table of Part (ii) of Figure 2

is 4x the total in the genotype table of Part (i), rather than 2x as

would be found in a table where all haplotypes were known.

The usual LD coefficient can be calculated for the numbers in

the composite haplotype table of Figure 1, and given the

designation D(comp). It is:

D(comp)~
M

4S
{

2na

4S

2nb

4S

The LD coefficient of Cockerham and Weir [12], D, is defined

in terms of frequencies Pij
:: and Pi:

:j , and given as the sum of two

coefficients, Dij
::zDi:

:j :

D~Pij
::zPi:

:j{2�ppi�ppj

It can be seen from the definitions of Pij
:: and Pi:

:j from [12],

ignoring the sample-size correction N/(N21), that this LD

coefficient is double the value of D(comp) given above.

The intuitive justification for the composite haplotype table is

most readily seen in the case of random mating (which is not

assumed in the definition of D(comp)). In a genotype such as

A1A2,B3B4, the true haplotypes will be either A1B3 and A2B4 or

alternatively A1B4 and A2B3. Under random mating, whichever

are the ‘false’ haplotypes are expected to occur at frequencies that

are simply the products of the relevant gene frequencies. The

frequencies contributed by the false haplotypes will dilute, but not

bias, the haplotype frequencies. It is readily shown that this

dilution will be simply a factor of 2. For example, following

Figure 1, the frequency of the ab haplotype in the composite table,

pab(comp), is the true frequency of the ab haplotype, pab, except

for the contribution from the double heterozygotes. The true

contribution ought to be 1
2

pab={{, whereas it is in fact
1
4
½pab={{zpa{={b�. Thus the difference between these two is

the difference between pab(comp) and pab, giving.

pab(comp)~pab{
1

4
½pab={{{pa{={b�:

Under the assumption of random mating, it can be seen that.

pab={{{pa{={b~2D,

where D is the usual LD parameter, equal to pab{papb. Therefore

pab(comp)~pab{
D

2

Subtracting papb from each side,

pab(comp){papb~pab{papb{
D

2
~D{

D

2
~

D

2
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The LHS of this equation is, by definition, the disequilibrium

coefficient from the composite table, D(comp). So the equation is

simply

D(comp)~
1

2
D

Since this is an expectation under the assumption of random

mating, the equation can be written as:

E½D(comp)�~ 1

2
D ð1Þ

where the expectation is taken over replicate populations of the

same sample size.

The LD measure introduced by Hill and Robertson [13] is

r2~D2=½pa:(1{pa):pb:(1{bb)�. An equivalent parameter can be

calculated from the composite haplotype table. The marginal

frequencies are the same as for the regular gamete table. So from

(1) it follows that the expectation of r2(comp) calculated from the

composite table is

E½r2(comp)�~ 1

4
r2 ð2Þ

It is convenient to define a coefficient where, under random

mating, the composite r2 estimates the gametic r2, rather than one-

quarter of the latter. As pointed out above, the LD coefficient of

Cockerham and Weir [12] does this. Therefore we define the

statistic r2
c as

r2
c~4r2(comp), ð3Þ

which from (3), (1) and (2) is calculated as

r2
c~

4D2(comp)

pa(1{pa)pb(1{pb)
ð4Þ

The above definition of r2
c ignores an extra factor introduced by

Weir [8]. This factor arises from the potential covariance of the

two alleles at the a locus and similarly at the b locus. These

covariances are implemented through a ‘single-locus disequilibri-

um factor’, paa{p2
a at the a locus and pbb{p2

b at the b locus,

which essentially measure deviations from expected homozygosity.

The modified definition of r2, r2
D, is

r2
D~

4D2(comp)

½pa(1{pa)z(paa{p2
a)�½pb(1{pb)z(pbb{p2

b)�
ð5Þ

Because of difficulties in implementing this disequilibrium

factor, its discussion is deferred to a later section under this label.

x2 for the composite haplotype table. Owing to double-

counting of genes, the composite gamete table has the property

that all marginal totals are multiples of 2, while the overall total is a

multiple of 4. Nevertheless a regular x2 can be calculated for such

tables, and the resulting x2(comp) values for a r6c table has close

to the expected distribution for (r{1)(c{1) degrees of freedom

(Appendix S1). It has the advantage of having more power than

the x2 values calculated from the genotype table, owing to the

large number of zero and unit values in the genotype table. Its use

in independence tests may, however, be limited by its sensitivity to

null alleles (see below).

Weighting of r2 values. The calculation of LD for a

microsatellite data set involves two levels of summation. There

will usually be many loci, say L, and each of the L(L{1)=2 pairs

yields a separate estimate of r2. However within each locus pair,

say locus l and locus m, there will be separate calculations for each

Figure 1. The composite haplotype table for a 2-allele observed sample.
doi:10.1371/journal.pone.0069078.g001
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pair of alleles. These two levels may be labelled as ‘between locus

pairs’ and ‘within locus pairs’. Each needs to be separately treated

in terms of weighting of the r2 values.

Between locus pairs. It is often the case that, through

missing readings, different locus pairs will have reduced numbers

of observations. The sample size for loci l and m may be

designated as Slm. Furthermore some loci will have large numbers

of alleles and therefore provide more information than loci with

small numbers of alleles. Waples and Do [9] have suggested the

weighting S2
lm(kl{1)(km{1) for the different r2 values, where kl

and km are the number of alleles at the l and m loci respectively.

The overall estimate of r2 then becomes

r2 ~
XL{1

l~1

XL

m~lz1

r2
lm : S2

lm(kl{1)(km{1) =

XL{1

l~1

XL

m~lz1

S2
lm(kl{1)(km{1)

ð6Þ

A recent publication [14] suggests a slightly different weighting

compared to that of Waples and Do [9], which would make a

small difference to the overall Ne estimate.

Within locus pairs. r2
ij values for alleles i at locus l and j at

locus m can be simply averaged to provide the r2
lm value. However

this has the undesirable property that rare alleles exert a

disproportionate influence on the overall r2 value. This effect that

can be ameliorated by omitting low frequency alleles [9]. A more

systematic way of avoiding this problem is to weight alleles

according to their frequency. In the case where the frequencies of

alleles Ai and Bj are respectively pi and qj , a suitable weighting is

piqj [15]. The overall r2
lm value then becomes

r2
lm(comp) ~

Xkl

i~1

Xkm

j~1

D2
ij(comp)

pi(1{pi)qj(1{qj)
:piqj

~
Xkl

i~1

Xkm

j~1

D2
ij(comp)

(1{pi)(1{qj)

ð7Þ

Since
P

piqj = 1, this value does not need to be normalised.

And since the marginal frequencies are the same for the regular

and composite tables, the same weighting applies to both.

It is interesting to contrast this weighting proportional to gene

frequencies to the normal x2 weighting of allele pairs for a r6c

table. The x2 with (r{1)(c{1) degrees of freedom can be

expressed as the sum of r6c individual x2 values each with 1 df, if

the values are weighted by (1{pi)(1{qj) rather than piqj . Thus

the x2 weighting gives rare alleles higher weight than common

ones. Zhao et al [15] have compared these two measures, amongst

others, for their use in QTL mapping, and recommend a

standardised x2 weighting for this case. However the higher

weighting for rare alleles, as suggested from x2, performs poorly as

just a simple measure of LD (Appendix S2).

Because of the different weighting for x2(comp) and r2
c , there is

no simple relationship between the two statistics. In general,

however, significant values of x2(comp) will lead to low estimates

of Ne and non-significant values of x2(comp) will be associated

Table 1. Symbols used in the text.

Ne Effective population size

S Number of diploid individuals in a sample

n11 Number of genotypes in a sample with aa at first locus and bb at second locus

n12 Number of aa b– genotypes where – refers to non-b allele at the second locus

n21 Number of a– bb genotypes

n22 Number of a– b– genotypes

na, nb Number of a and b alleles respectively

pa, pb Allele frequencies in gametic and composite table, = na/2S and nb/2S

pab Frequency of the ab haplotype

D Gametic disequilibrium coefficient = pab – papb

r2 Gametic correlation = D2/[pa(1– pa)pb(1– pb)]

M Number of ab haplotypes in composite haplotype table = 4n11+2n12+2n21+ n22

pab(comp) Frequency of ab in composite haplotype table = M/4S

D(comp) Disequilibrium coefficient from composite haplotype table = pab(comp) – papb

D Burrows’ disequilibrium coefficient = 2D(comp)

r2(comp) r2 value from composite haplotype table = D2(comp)/[pa(1– pa)pb(1– pb)]

r2
c

Composite r2 parameter = 4r2(comp)

r̂r2
c Estimate of r2

c from sample

r2
D r2

c with single-locus disequilibrium = D2 compð Þ= pa 1{pað Þz paa{p2
a

� �� �
pb 1{pbð Þz pbb{p2

b

� �� �

x2(comp) x2 calculated from composite haplotype table

pn Frequency of null alleles at a locus

a Half the difference between coupling and repulsion heterozygote frequencies

doi:10.1371/journal.pone.0069078.t001
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with high Ne estimates. See [16] for a more detailed examination

of the x2 statistic.

The estimation of Ne. The theory for estimating Ne from

unlinked loci has been developed by Weir [8], Weir and Hill [6]

and Hill [3]. The effective size refers to a model Wright-Fisher

population, and departures from this model, such as permanent

pair bonding, make a difference of a factor of 2 in Ne estimates [6].

Such pair bonding is, of course, unlikely in fruit fly populations. A

model assuming discrete generations as considered here is,

however, necessarily an approximation to real populations that

are likely to have overlapping generations.

Taking no account, for the moment, of the effect of sample size,

the key equation relating the expected LD level to Ne is

E½r2�~ c2z(1{c)2

2Nec(2{c)
, ð8Þ

where c is the recombination frequency. This reduces to

E½r2�~ 1

3Ne

, ð9Þ

for unlinked loci, c~ 1
2
. The expectation for r2 here assumes a

balance between increase of r2 due to finite population size and

loss due to recombination. All of the equations below assume this

balance between drift and recombination. Equation (8) is derived

using the ratio of expectations of r2 rather than the expectation of

the ratio (see Hill [17]). However computer simulation shows that

it works well for loosely linked or unlinked genes, those of interest

in the present study. It is unbounded for low values of Nc, when

the expression given by Sved and Feldman [18]:

E½r2�~ 1
1z2Nec(2{c)

ð10Þ

seems to work better. However for c~ 1
2
, the RHS of equation (10)

reduces to 2=3Ne, which is double the value of equation (9) and

clearly inaccurate at this end of the scale.

Equations (8)–(10) assume the measurement of haplotype or

gamete frequencies. As previously indicated, diploid data may be

taken into account using the composite LD measure. It follows

from equations (1) and (4) that the expectation for this measure is

identical to that of (8):

E½r2
c �~

c2z(1{c)2

2Nec(2{c)

Sample size is a critical issue in determining LD levels [8], [6],

[3]. This is especially the case for unlinked loci, where the levels of

x2 and r2 cannot be zero even if there is no association of loci in

the population being sampled. The usual procedure in estimating

true LD levels in the population is simply to subtract the level of r2

expected for zero LD with a particular sample size. As pointed out

in [19], however, there is one circumstance where this procedure

will not work. With complete LD in the population, r2~1, as

commonly found for the most tightly linked SNPs, the subtraction

will falsely suggest r2 levels less than 1.

The effect on the equation for gametes (8) is to increase the

expected value of r2 by a factor of 1=2S, where 2S is the haploid

sample size. The r2 statistic in this case is shown as r̂r2 to indicate

that it is an estimate that includes the effects of sampling

E ½̂rr2�~ c2z(1{c)2

2Nec(2{c)
z 1

2S
ð11Þ

In fact the exact expectation for r̂r2 should include the term

1=(2S{1) rather than 1=2S, equivalent to noting that the exact

expectation of x2 is 2S=(2S{1)~1z1=(2S{1) rather than 1

[20]. Weir [8] takes this factor into account in working with the

‘unbiased’ rather than ‘biased’ value of r2.

As shown in equations (1) and (3) of Appendix S1, the

expectation for the composite x2, or equivalently the composite

LD coefficient r̂r2
c , involves the factor 1{ 1

(2S{1)2, rather than

1z 1
2S{1

applicable to haploid data. This factor is very close to 1.

Figure 2. The composite haplotype table for an example of two microsatellites from the fruit y outbreak data set.
doi:10.1371/journal.pone.0069078.g002
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Similarly the sampling correction factor for r̂r2
c for a diploid sample

of size S is close to 1
S
:

E ½̂rr2
c �~

c2z(1{c)2

2Nec(2{c)
z

1

S
½1{

1

(2S{1)2
� ð12Þ

or for unlinked loci:

E ½̂rr2
c �~

1

3Ne

z
1

S
½1{

1

(2S{1)2
� ð13Þ

The estimate for Ne comes from inverting equation (13), where r̂r2
c

is calculated according to equation (6) and each r2
kl is calculated

according to equation (7)

N̂Ne~
1

3fr̂r2
c{

1
S
½1{ 1

(2S{1)2
� g

ð14Þ

The effect of null alleles. Use of the composite disequilib-

rium index depends critically on the ability to distinguish

heterozygous and homozygous genotypes. Unfortunately the

presence of any null alleles makes this distinction difficult.

Genotypes such as a=anull , will be incorrectly scored as a=a.

Homozygous null genotypes are not easily detected, since it is

difficult to distinguish between absence of a band and simple

failure of the PCR reaction in the rare cases expected for

homozygotes.

The expected effect of null alleles on the composite LD statistic

can be quantified as in Appendix S3. This shows that a null allele

at one of the two loci at a frequency pn alters the expectation of

equation (1) to:

E½D(comp)�~ D

2

1

(1{pn)

The statistic r2
c is increased by the factor 1=(1{pn)2.

Although this effect may be small, it can readily be shown to

overwhelm the calculations when the expected LD value is small

due to high effective population size. In the case of an infinitely

large population, the true value of r2
c is expected to be just the

sampling correction, which is approximately 1
S
. A null allele at one

of the two loci is expected to increase this value to 1
S
: 1

(1{pn)2.

Applying equation (13), the estimated value of r2
c is then found by

subtracting the usual 1
S

sampling contribution, giving

E½Ne�~
S(1{pn)2

3½1{(1{pn)2�
ð15Þ

Applying numerical values to equation (15), for a sample size

S~32 and null frequency pn~0:02, the equation yields a value for

Ne of 259. The actual population in this case should be infinitely

large, so that a null allele frequency as low as 2% can have a

strikingly large effect. A null allele at frequency 0.1, still difficult to

detect, leads to a Ne estimate of 45.

Simulations with null alleles. Simulations with null alleles

have been carried out to test these expectations. These are 2-locus

simulations with heterozygosities ranging from 50% to 87%.

Under these conditions, equation (15) may slightly over-estimate

the effect of null alleles. For example, in the above case with

S~32 and pn~0:02, simulation yields a value of Ne~265
compared to expectation of 259, while pn~0:1 yields Ne~56
compared to 45.

Simulation can also be used to check on more realistic cases

where the value of Ne comes from multiple loci, rather than a two-

locus simulation. These show that even low levels of null alleles at

a single locus may have measurable effects. For example with 32

loci each with 5 alleles, the presence of just one locus amongst

these having a null allele frequency of 10% can have a detectable

effect, reducing the expected value of Ne from infinitely large to

less than 1,000. Much the same result is found for 5 loci each with

a null frequency of 2%. Simulations also indicate that 8 out of 16

loci having null alleles at a particular frequency has much the same

effect as one out of two loci in the simulations and calculations

given above.

Correcting the effect of null alleles through

permutation. A general formulation for the estimation of r2
c

may be given as follows:

r̂r2
c~r2

czCorrection Factor: ð16Þ

Here r̂r2
c is the estimate derived from the data, and r2

c is the true

measure of LD in the population, which is the quantity of interest

in estimating Ne. The analysis above has shown that in the

absence of null alleles, the correction factor is attributable purely

to sampling, and is 1
S
½1{ 1

(2S{1)2�. The analysis on null alleles has

shown that these will act as disturbing factors, whose effect can

conveniently be subsumed into the correction factor in equation

(16).

A randomising procedure can be suggested that will ameliorate

the effect of null alleles. If the genotypes at each locus are

independently randomly permuted amongst individuals, such as in

the exact test of significance of LD, eg. [21], there can be no

underlying LD. So the mean value of r2
c given by the average of

many such randomly permuted samples is a direct estimate of the

correction factor in (16) taking into account the actual genotype

structure. If r̂r2
c ½permute� is the estimated value of r2

c in such

permuted samples, then equation (16) becomes

r̂r2
c~r2

czr̂r2
c ½permute� ð17Þ

From equation (9), the estimate of Ne is then simply

Ne~
1

3(̂rr2
c{r̂r2

c ½permute�) ð18Þ

Both r̂r2
c and r̂r2

c ½permute� can be given with or without the

sampling correction factor 1
S
½1{ 1

(2S{1)2�. In the data tables below,

the factor has been subtracted from both in order to use equation

(14) to estimate the value of Ne with no permutation. However for

the value of Ne with r2½permute� subtracted, the sampling factor

cancels out and could have been omitted.

The permutation approach can be tested by simulation. This is

shown in the first four lines of Table 2. All, except for the final two

rows, involved 16 loci simulated for 20 generations, followed by

sampling of 32 individuals. The first row shows the average r2
c

LD Theory for Unlinked Loci
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value for a range of population sizes from 32 to 1028. The second

row shows the estimated Ne values using equation (14), with each

of the r2
c values calculated directly from the composite haplotype

table according to equations (1) and (4). The Ne values are in good

agreement with expectation.

The effect of introducing null alleles is shown in row (3). The

simulations here involved choosing 8 of the 16 loci, and replacing

5% of alleles with null alleles in these. The Ne values calculated

using equation (14) are drastically reduced, especially for the

higher population sizes. However the permutation correction in

row (4) essentially brings the estimated Ne values back to their

expected value.

In the case of an infinitely large population, simulation is not

necessary to justify the permutation approach for correcting for

null alleles. The loci would be in linkage equilibrium in such a

population, with a true value of r2
c of zero. The only contributing

factor to the observed value of r̂r2
c must be the correction factor,

attributable to null alleles, plus the usual sampling factor of

approximately 1=S. Additional permutation of genotypes in a

sample from a population with zero LD will not have any effect, so

the r̂r2
c estimates with and without permutation will be identical and

equal to r2½permute�.
The case of an infinitely large population also serves to show

that the permutation approach will NOT work in removing biases

due to non-random mating. For example, a sample might consist

of individuals from two independently randomly mating popula-

tions, where the substructure has not been recognised. Such a

sample will give a reduced estimate of Ne due to the induced LD

[22] even though there may be no LD within each of the two

contributing populations. However permuting the sample cannot

resolve this issue. It can be seen that the value of r2½permute� from

the composite table will be zero, except for the normal sampling

component of approximately 1=S, assuming no null alleles. The

application of equation (17) would then falsely indicate that the LD

within populations was real and attributable to small population

size. A valid correction could be produced if the sub-samples from

the two populations could be independently permuted, which is

possible in computer simulation but not with real data where the

substructure is unknown.

Taking account of all types of departure from random mating

thus appears difficult. But Waples and England [23] have

considered the case of migration into a random mating

population, and shown that there is little effect on Ne estimates

in this case.

Including the single-locus disequilibrium factor. As

mentioned above, a homozygosity correction term was suggested

by Weir [8], as shown in equation (5). The effects of this term are

shown in row (5) of Table 2, the r2 value, and row (6), the Ne

value. The latter shows a substantial bias in Ne values, especially

for the larger population sizes. The size of this discrepancy seems

surprising, since, under random mating, the mean value of the

homozygosity correction should be zero, and only a small

correction should result. However there is a bias due to the fact

that, in a finite-size sample, the expectation of aa frequency is less

than p2
a. This is most evident where there is a single a allele, giving

pa~1=2S, but where the frequency of the aa genotype must be

zero.

The obvious way of eliminating this bias would seem to be the

use of ½na=2S�½(na{1)=2S] as the expected frequency of

homozygotes. But simulation shows that this substantially over-

corrects the bias. It is, however, possible, just as in the case of

correcting the bias for null alleles, to use a permutation correction.

This involves calculation of r̂r2
D from equation (5), random

permutation of genotypes in the sample, and calculation of

r̂r2
D½permute� in permuted samples. The procedure may be

summarised as:

r̂r2
D~r2

Dzr̂r2
D½permute� ð19Þ

From equation (19), the estimate of Ne is

Ne~
1

3(̂rr2
D{r̂r2

D½permute�)
ð20Þ

Simulation in row (7) of Table 2 shows that this correction

works well for all Ne values.

Table 2. Observed statistics from simulations with and without incorporating single-locus disequilibrium.

Actual Ne 32 64 128 256 512 1024

(1) r̂r2
c

0.00993 0.00511 0.00255 0.00129 0.00065 0.00032

(2) Ne (from equation 14) 34 65 131 259 516 1036

(3) Ne (null alleles) 26 41 59 76 89 97

(4) Ne (null alleles+permute) 33 64 127 249 494 1025

(5) r̂r2
D (diseq. included) 0.01067 0.00598 0.00352 0.00225 0.00163 0.00133

(6) Ne (diseq. included) 31 56 95 148 203 249

(7) Ne (diseq. included+permute) 35 68 134 265 523 1040

(8) Ne (null alleles - diseq. included) 31 56 96 147 206 248

(9) Ne (nulls - diseq. corr.+permute) 35 68 136 274 559 1127

(10) r̂r2
c s.d. 0.00655 0.00397 0.00285 0.00231 0.00205 0.00193

(11) r̂r2
D s.d. (diseq. included) 0.00468 0.00272 0.00186 0.00146 0.00126 0.00117

(12) r̂r2
c s.d. (32 loci) 0.00454 0.00277 0.00195 0.00153 0.00134 0.00124

(13) r̂r2
D s.d. (diseq. included, 32 loci) 0.00299 0.00167 0.00108 0.00081 0.00067 0.00059

All used sample size S = 32.
doi:10.1371/journal.pone.0069078.t002
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Table 3. Summary of Ne estimated by various procedures for East coast outbreak populations of B.tryoni, with the most likely
estimate shown by Y.

S No homozygote correction Homozygote correction Likelihood Significance

Unlinked No
permute Eqn.
(14)

Unlinked
permute Eqn.
(18)

Unlinked permute
Eqn. (20) Y All loci

permute Eqn.
(20) LDNe genotype composite

Albury03 27 60 ‘ ‘ ‘ ‘ *

Barooga03 33 40 30 40 20 20 ***

Condobolin02 42 40 ‘ ‘ ‘ ‘ *

Coota02 43 110 ‘ 450 340 510 ***

Corowa02 22 20 120 180 100 ‘

Cowra 20 20 230 150 180 ‘

Deniliquin02 40 30 40 40 30 ‘ *** ***

Deniliquin03 53 40 100 150 70 90 * ***

Deniliquin04 73 50 130 160 70 110 * ***

Dubbo02 26 30 180 130 160 ‘ **

Forbes02 34 40 250 180 170 ‘ **

Grenfell02 31 130 ‘ ‘ ‘ ‘ ***

Hay02 26 20 30 20 20 140 ***

Hay03 28 40 230 120 50 80 * ***

Henty02 20 20 120 60 50 190 **

LakeCarg02 74 30 40 50 30 70 ** ***

Leeton03 82 70 110 160 70 80 ** ***

Narrandera04 25 30 ‘ 770 130 510 *

Parkes02 20 30 130 100 80 500

Parkes03 41 30 140 140 190 310 **

Temora02 20 20 120 160 150 ‘

TheRock02 20 30 410 170 100 ‘

Tumut 20 20 670 470 270 ‘ *

Wagga02 57 70 790 ‘ ‘ ‘

Wagga03 162 210 660 740 610 860

Wahgunyah 24 20 90 70 50 ‘ * *

Wilcannia02 43 20 50 60 30 50 *** ***

Wodonga 42 30 110 110 100 130 ***

WWyalong03 24 120 ‘ ‘ 110 ‘ *

Young02 49 110 170 380 400 440 ** ***

Coffs02" 18 40 70 60 70 ‘

Foster02" 34 40 ‘ ‘ ‘ ‘ *** ***

Grafton03" 29 40 290 280 510 ‘ ***

Maclean02" 34 50 600 280 360 ‘ ***

NSW03" 42 90 380 ‘ ‘ ‘

QLD03" 42 70 430 290 530 ‘ ***

Sawtell02" 34 120 ‘ ‘ ‘ ‘

SWRocks02" 33 40 ‘ ‘ ‘ ‘ ***

Syd03" 42 130 ‘ ‘ ‘ 630 *

Taree03" 30 40 ‘ ‘ ‘ ‘

"Non-outbreak population.
*Significant at 5% level.
**Significant at 1% level.
***Significant at 0.1% level.
doi:10.1371/journal.pone.0069078.t003
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The homozygosity deviation factor, paa{p2
a, was not specifically

designed in [8] to take into account null alleles. It seems

particularly vulnerable to their effect, since paa may be substan-

tially over-estimated. However simulation shows that this factor

dramatically improves rather than worsens the effect of null alleles.

In contrast to the bias of the r2
c considered previously that lacks the

disequilibrium correction, row (8), which introduces null alleles at

the same frequency of 5% in half of the loci, gives almost the same

Ne value as row (6) where there are no null alleles. As previously,

the bias due to the factor can be eliminated by subtracting the

permutation r2 using equation (20), as shown in row (9).

A second advantage of the disequilibrium factor is that it

reduces the variance of estimates. The Ne estimates given in

Table 2 are based on large numbers of replicates. However the

variability between individual simulation runs is high. Estimated

standard deviations of r̂r2
c and r̂r2

D are given in rows (10) and (11).

Both standard deviations are high in relation to the mean, but that

associated with r̂r2
c is especially so. Of course the magnitude of the

standard deviations is heavily dependent on the choice of number

of loci and heterozygosity levels. Doubling the number of loci from

16 to 32 substantially reduces standard deviations, row (12) and

row (13), but the relativities between the two terms are maintained.

In summary of Table 2, only the original Ne estimate from

equation (14), where r2
c lacks the single-locus disequilibrium factor,

gives unbiased Ne estimates. Nevertheless there is a strong reason

for including the faxtor, provided that the bias in Ne values is

compensated, either by permutation as above, or by empirical

correction as implemented in the computer program LDNe [9].

Weir’s insight in introducing this factor is vindicated by the

increased accuracy of estimation and lowered sensitivity to null

alleles.

Results and Discussion

Results for the East coast populations are given in Table 3.

Populations with low sample numbers, 15 or less, were omitted

from the analysis, leaving 40 out of the original 52 samples. The

table includes mostly samples from outbreak areas where the flies

were not normally found, but also ten samples where the flies are

endemic, including one from Queensland, the home range of the

flies. The expectation is that these ten are samples from large

populations.

The results are based on 29 microsatellites, a total of 29628/

2 = 406 locus pairs. Because of missing readings, not all pairs are

present in all populations.

Amongst the 29 loci, 5 pairs are known to be closely linked, 51

pairs to be loosely linked, and 197 to be unlinked [24]. For the

remaining 153 locus pairs, one or both chromosomes are

unknown. Average values of r2
D for the four classes are 0.0434,

0.0153, 0.0084 and 0.0096 respectively. As expected, average

values are higher for the known linked loci.

Values of r2
c were calculated from the composite haplotype

tables, and Ne values (column 3) were then calculated from these

values using equation (14). All populations, including the eight

non-outbreak populations, show very low estimated population

sizes. All are highly significantly different from infinite population

size. The major conclusion from the above analysis, however, is

that the existence of either null alleles or population sub-structure

can cause cause Ne values to be substantially under-estimated.

A direct test for null alleles is given in Table 4. The signal for

null alleles is, eg. [25], excess of homozygotes over expectation. In

a data set with multiple populations, a non-parametric test can be

carried out based on number of populations where there is such an

excess. Table 4 shows the results, revealing at least 10 out of 29

microsatelltes with significant excess of homozygotes, which, in the

lack of systematic homozygote excess, can likely be attributed to

null alleles rather than to population structure.

Returning to Table 3, column 4 shows the values of Ne using r2

values corrected using equation (17). The correction factor in this

case comes from 200,000 simulated populations for each outbreak

sample. The Ne values clearly have a more realistic mixture of

population sizes than the estimates based on the raw r2 values.

Positive values of greater than 1,000 are listed as infinite, as also

are the Ne estimates associated with negative r2 estimates. Lower

values of Ne have been rounded to the nearest 10.

The disequilibrium factor is introduced in column 5. This

column is marked as giving the most likely estimate of Ne. As

expected, all of the really small population size estimates come in

the outbreak populations rather than in the endemic populations.

The Ne values in columns 3–5 are based on the unlinked locus

pairs, including the 153 additional pairs likely to be loosely linked

or unlinked. The values in column 6 are the equivalent corrected

Ne estimates based on all locus pairs. These can be directly

compared to the values of Ne given by the LDNe program [9], also

Table 4. Excess of homozygosity for different microsatellites.

Rank Microsatellite Number of populations

Homozygous excess Out of

1 Bt2.9a 36 39

2 Bt6.1a 33 36

3 Bt15 36 40

4 Bt4.1a 36 40

5 Bt1.7a 35 40

6 Bt2.6a 33 40

7 Bt2.6b 31 38

8 Bt3.2b 30 37

9 Bt1.6a 31 39

10 Bt32 30 39

11 Bt10 30 40

12 Bt7.9a 29 39

13 Bt6.12a 27 40

14 Bt5.10a 27 40

15 Bt8.5a 26 40

16 Bt11 25 40

17 Bt7.2b 23 39

18 Bt1.1a 20 40

19 Bt9.1a 20 40

20 Bt14 18 40

21 Bt8.6a 18 40

22 Bp78 18 40

23 Bt17 17 40

24 Bt4.3a 16 40

25 Bt4.6a 15 38

26 Bt6.8a 15 40

27 Bt8.12a 15 40

28 Bt6.10b 14 40

29 Bt5.8a 9 38

doi:10.1371/journal.pone.0069078.t004
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based on all locus pairs. There is good agreement for the smallest

population sizes, although the LDNe program shows infinite sizes

in a number of cases where the values of Ne in column 5 are finite.

Ne values in column 5, using unlinked loci, differ very little from

values on column 6 using all loci. The expectation is that the use of

linked loci will lead to under-estimation of Ne. Many, but not all,

values in column 6 are slightly below those in column 5, but the

differences are not large. This result seems fortuitous, given that

linkage relationships are not as well established for many

organisms, necessitating the use of all locus pairs.

The final two columns of Table 3 show two different tests of

significance, each based on the unlinked plus likely unlinked sub-

sample of locus pairs. The first is the usual genotype likelihood test

of LD [21], based on permutation of genotypes, with log

likelihoods of the genotype tables summed over all relevant locus

pairs. The second is a likelihood test based on permutation of

Table 5. Estimated Ne values for North-West population samples.

S

No homozygote
correction Homozygote correction Likelihood Significance

Unlinked No
permute
Eqn. (14)

Unlinked
permute
Eqn. (18)

Unlinked permute
Eqn. (20) Y All loci

permute Eqn.
(20) LDNe genotypea composite

K-Ke2002 22 30 160 270 90 ‘ ***

K-Ke2003 39 20 60 90 100 ‘ ***

K-Kl2000 77 70 240 290 160 190

K-Kl2001 50 60 190 210 170 ‘

K-Kl2002 44 30 60 100 70 80 ** ***

K-Kl2003 50 50 ‘ ‘ ‘ ‘ **

K-Km2002 27 20 420 280 90 50 * ***

N-DWN02 40 20 50 80 90 780

N-DWN03 20 60 ‘ ‘ ‘ ‘ ***

N-DWN99 20 ‘ ‘ ‘ ‘ ‘

N-DWNBUSH02 30 40 ‘ ‘ ‘ ‘

N-DWN-KTH03 19 60 ‘ ‘ ‘ ‘

N-GOVE02 17 ‘ ‘ ‘ ‘ ‘

N-KAK02 40 40 80 120 120 440 ***

N-KTH03 20 30 100 230 ‘ ‘

N-KTHGO02 28 80 ‘ 440 470 ‘ **

N-mDK02 27 40 300 180 270 ‘

N-mDKA02 20 80 ‘ ‘ 150 ‘

N-mKKu03 36 30 100 120 80 200 **

N-nDWN02 50 70 140 210 320 ‘ *

N-nDWN03 20 90 ‘ ‘ ‘ 100 ***

N-nKTH03 20 30 170 270 420 ‘

Q-AT02 21 40 ‘ ‘ ‘ ‘

Q-ATH99 21 110 ‘ ‘ ‘ 340

Q-CT00 23 140 ‘ ‘ ‘ ‘ *

Q-CT99 17 50 90 280 ‘ ‘

Q-LR00 24 80 ‘ ‘ ‘ 110

Q-MB02 21 40 ‘ ‘ ‘ ‘

Q-Qld00 94 110 260 260 390 ‘ ***

Q-QLD01 55 70 280 280 630 300

Q-QLD02 40 40 220 250 160 ‘ *

Q-QLD03 42 40 250 110 140 ‘

W-Brm01 21 20 30 40 30 80

W-Der01 17 10 10 10 10 10 *** **

*Significant at 5% level.
**Significant at 1% level.
***Significant at 0.1% level.
doi:10.1371/journal.pone.0069078.t005
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genotypes, with likelihoods calculated on the composite haplotype

tables. This test seems much more sensitive. Partly this is because,

as indicated above and illustrated in Figure 2, the composite

haplotype table is much denser than the genotype table, where all

the zero and unit values do not contribute to the likelihood.

However the second test is influenced by LD, but also by null

alleles. The significant values are mostly associated with low

population sizes, but there are exceptions to this in both directions.

In general, the significance tests seem to be of limited value in

judging whether population sizes are infinite or not.

The results from North-West samples [11] are given in Table 5.

The results show a comparable proportion of high population

numbers compared to the East coast populations of Table 3. Less

has been known about these populations, but these results would

suggest that, with the exception of the final two samples from

Broome and Derby in West Australia, these are well-established

outbreaks in most cases.

Summary of the Findings
The Burrows composite index can be equivalently derived from

a ‘composite haplotype table’ in which all genotypes sampled

contribute four possible haplotypes.

Although the composite haplotype table has marginal totals that

are even numbers due to double counting, a valid r6c x2 can be

calculated for the table. The r2 value calculated from this table,

r2(comp), needs to be multiplied by a factor of 4 to give r2
c , a valid

estimator of r2.

The expected r2 value calculated for the table is 1
S
:½1{ 1

(2S{1)2�
in the absence of LD. This contrasts with the sampling correction

of 1
2S
:½1z 1

(2S{1
� for r2 calculated when haplotypes can be

recognised.

The overall calculation of r2
c involves summation of values from

different locus pairs. Within locus pairs, it involves summation of

r2
c values for each pair of alleles. The weighting for the former is

taken from [9], while a weighting proportional to gene frequencies

is proposed for the latter.

The results when this formula are applied to data from

Queensland fruit fly give low Ne values in all samples, including

ones from known large endemic populations. Null alleles are

suggested as a cause for this discrepancy, and shown to be frequent

in the data.

The effect of a null allele at frequency pn is shown to increase

the composite r2
c value by the fraction 1=(1{pn)2. Although this

effect seems small, it will nevertheless overwhelm the calculations

for large population sizes.

The r2
c value can be corrected for null alleles using a comparison

between the calculated r̂r2
c value and an equivalent r̂r2

c value

calculated when genotypes in the sample are permuted at random.

This correction is verified by simulation.

The single-locus disequilibrium factor suggested by Weir [8],

equivalent to a homozygosity correction, is introduced into the

calculation. This alters the value of r2
c to r2

D. Use of r2
D is shown to

bias the Ne values due to the difficulty of calculating the single-

locus disequilibrium factor using paa{p2
a in a finite population.

Simulation shows that this bias can be rectified using the same

permutation approach as for null alleles.

r2
D, and Ne calculated from r2

D, have lower variances than r2
c ,

and Ne calculated from r2
c .

Simulation shows that the r2
D values are almost unaffected by

null alleles, in sharp contrast to the r2
c values.

The estimates of Ne from both East coast and NorthWest

populations are, as expected, mostly low for outbreak populations

and high for endemic populations.

The calculations are based on loci known to be unlinked, but

are not substantially changed when all locus pairs are considered.

Linkage information is usually not available for non-laboratory

organisms, and this result shows that lack of such information may

not be critical in calculating Ne based on LD.

Although the LDNe program [9] is empirically based, it uses the

single-locus disequilibrium factor, and appears to work well both

with and without null alleles.
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